

data sheet, version 2.0

1. Description

The sensormodul IMS-B-R0001 has been designed for all applications in which high currents, voltages and temperatures have to be measured. It contains a 100 μ Ohm precision resistor, the ISA-ASIC and all analog circuity for a complete 4-channel 16bit data acquisition system. It has been developed as a highly versatile subunit for a simple integration into an external μ C system.

2. Electrical characteristics

Power supply	Min. Max.	
Supply voltage	4.7 V 5.3 V	
Supply current	4 mA 6 mA	
Current measurement		
Rresistance value of the Shunt	100 μΩ	
Range	±1200 / 300 / 150 / 75 A	
Resolution	40 / 10 / 5 / 2.5 mA	
Voltage measurement		
Range	±30 / 15 / 7.5 / 3.75 V	
Resolution	1 / 0.5 / 0.25 / 0.125 mV	
Differential voltage		
Range	±120 / 30 / 15 / 7.5 mV	
Resolution	4 / 1 / 0.5 / 0.25 μV	
Internal temperature		
Range	-40+125°C	
Resolution	0.1°C	

3. Electrical circuit

See page 3

4. Pin configuration (left to right)

SIL-type connector 12 PINs, spacing 1.27 mm solder pads with through connections

number	Function
1	EZPRG ¹⁾
2	CLK ²⁾
3	SCLK
4	SDAT
5	INTN
6	VDDD ³⁾
7	GND
8	ETS ⁴⁾
9	VBAT ⁴⁾
10	$V_{x}^{5)}$
11	V _x DC ⁶⁾
12	$V_x AC^{(1)}$

Notes:

- ¹⁾ not used, should not be connected
- ²⁾ the clock frequency of a 8 Mhz oszillator has to be applied

IMS-B-R0001

- ³⁾ supply voltage input +5 VDC
- ⁴⁾ inputs for differential voltage measurement, if not used connect to GND
- ⁵⁾ input for the unkown voltage V_x with reference to GND, the voltage will be seen at the ETR input
- ⁶⁾ this line is provided for the external μ C to switch the unknown voltage on (high signal) and off (low signal) to reduce to current consumption in the active wake-up mode)

5. Photo

Photo of the sensor module IMS-B-R0001

6. Calibration

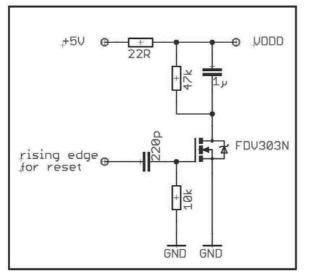
The ISA-ASIC on the modul is precalibrated and the calibration constants are written into the ZZR-register which is a OTP-memory. These data are automatically loaded into the RAM register TRR during the power up routine (POR). The following properties are calibrated:

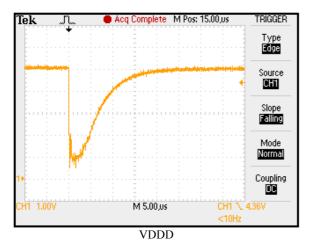
- offset of the amplifier (TRIMA)
- internal current source (TRIMC)
- absolute value of the reference voltage (TRIMBV)
- TC value of the reference voltage (TRIMBTC)

In addition the ISA-ASIC provides the possibility to calibrate the absolute values of all input channels. The calibration coefficients can also be stored in the ZZR-register (for more details see data sheet of the IHM-A-1500)

The absolute accuracy depends mainly on the uncertainty of the shunt. For reach the highest accuracy the complete module has to be calibrated on the customer side. For getting a complete calibrated module please have a look on our IMC-A-R0001 data sheet.

7. Shunt drawing See page 4


IMS-B-R0001ISABELLENHÜTTE Heusler GmbH & Co. KGDillenburg, 15.12.2008,
he/jh/bs


data sheet, version 2.0

8. Reset possibility

To ensure a correct operation over long time it is necessary to supply a possibility to reset the sensormodule from the external μ C. To start the ASIC-internal reset procedure the supply voltage has to fall below +3.0 VDC for at least 1 µsec. The electrical circuit shown below can be used to realize this reset. A rising edge at the input will drive VDDD down to nearly 1 VDC for 2 µsec as shown in the screen shot below. After approx. 1 msec the ASIC internal reset procedure is finished and the μ C can reprogram the internal registers for the application configuration.

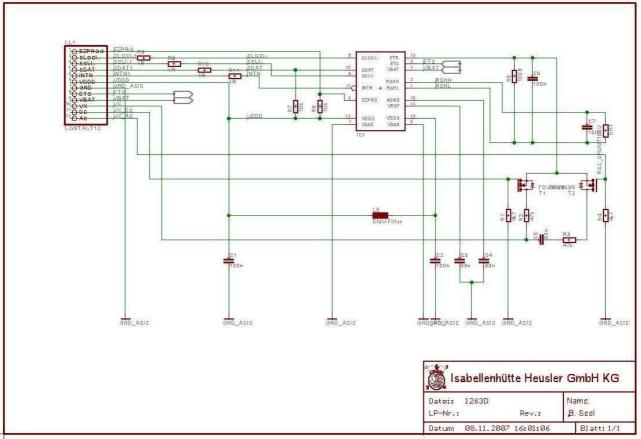
Electrical circuit for reset-possibility

9. General

For a fast and easy start with this module the source code for the serial communication between the ISA-ASIC and the external μ C can be provided in C-code.

IMS-B-R0001

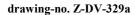
The driving power of the digital output lines of the ASIC is limited, therefore the lenghth of the connector lines to the external μ C should be as short as possible. It should never exceed a length of 100 mm to avoid errors due to dropout and interferences.

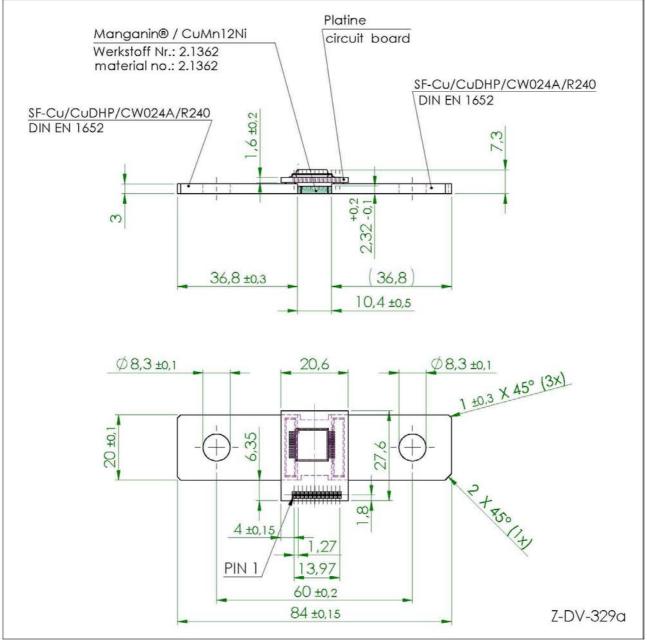

IMS-B-R0001 ISABELLENHÜTTE Heusler GmbH & Co. KG Dillenburg, 15 he/jh/l	,
--	---

data sheet, version 2.0

IMS-B-R0001

Electrical circuit


electrical circuit of IMS-B-R0001


IMS-B-R0001	ISABELLENHÜTTE Heusler GmbH & Co. KG	Dillenburg, 15.12.2008, he/jh/bs
-------------	--------------------------------------	-------------------------------------

data sheet, version 2.0

IMS-B-R0001

shunt drawing

IMS-B-R0001 ISABELLENHÜTTE Heusler GmbH & Co. KG	Dillenburg, 15.12.2008, he/jh/bs
--	-------------------------------------